
Package: gslnls (via r-universe)
September 12, 2024

Type Package

Title GSL Multi-Start Nonlinear Least-Squares Fitting

Version 1.3.3

Date 2024-05-15

Description An R interface to nonlinear least-squares optimization
with the GNU Scientific Library (GSL), see M. Galassi et al.
(2009, ISBN:0954612078). The available trust region methods
include the Levenberg-Marquardt algorithm with and without
geodesic acceleration, the Steihaug-Toint conjugate gradient
algorithm for large systems and several variants of Powell's
dogleg algorithm. Multi-start optimization based on
quasi-random samples is implemented using a modified version of
the algorithm in Hickernell and Yuan (1997, OR Transactions).
Bindings are provided to tune a number of parameters affecting
the low-level aspects of the trust region algorithms. The
interface mimics R's nls() function and returns model objects
inheriting from the same class.

BugReports https://github.com/JorisChau/gslnls/issues

URL https://github.com/JorisChau/gslnls

Depends R (>= 3.5)

Imports stats, Matrix

Encoding UTF-8

Language en-US

License LGPL-3

SystemRequirements GSL (>= 2.2)

Biarch true

RoxygenNote 7.2.3

Repository https://jorischau.r-universe.dev

RemoteUrl https://github.com/jorischau/gslnls

RemoteRef HEAD

RemoteSha 3df1e460ec444474873722c165d87fdbe2d31c28

1

https://github.com/JorisChau/gslnls/issues
https://github.com/JorisChau/gslnls


2 anova.gsl_nls

Contents
anova.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
coef.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
confint.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
confintd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
confintd.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
deviance.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
df.residual.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
fitted.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
formula.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
gsl_nls_control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
gsl_nls_large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
hatvalues.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
logLik.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
nls_test_list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
nls_test_problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
nobs.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
predict.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
residuals.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
sigma.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
summary.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
vcov.gsl_nls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Index 37

anova.gsl_nls Anova tables

Description

Returns the analysis of variance (or deviance) tables for two or more fitted "gsl_nls" objects.

Usage

## S3 method for class 'gsl_nls'
anova(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... Additional objects inheriting from class "gsl_nls".

Value

A data.frame object of class "anova" similar to anova representing the analysis-of-variance table
of the fitted model objects when printed.



coef.gsl_nls 3

See Also

anova

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + 1 + rnorm(n, sd = 0.1)

)
## model
obj1 <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))
obj2 <- gsl_nls(fn = y ~ A * exp(-lam * x) + b, data = xy,

start = c(A = 1, lam = 1, b = 0))

anova(obj1, obj2)

coef.gsl_nls Extract model coefficients

Description

Returns the fitted model coefficients from a "gsl_nls" object. coefficients can also be used as
an alias.

Usage

## S3 method for class 'gsl_nls'
coef(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Named numeric vector of fitted coefficients similar to coef

See Also

coef



4 confint.gsl_nls

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

coef(obj)

confint.gsl_nls Confidence interval for model parameters

Description

Returns asymptotic or profile likelihood confidence intervals for the parameters in a fitted "gsl_nls"
object.

Usage

## S3 method for class 'gsl_nls'
confint(object, parm, level = 0.95, method = c("asymptotic", "profile"), ...)

Arguments

object An object inheriting from class "gsl_nls".

parm A character vector of parameter names for which to evaluate confidence inter-
vals, defaults to all parameters.

level A numeric scalar between 0 and 1 giving the level of the parameter confidence
intervals.

method Method to be used, either "asymptotic" for asymptotic confidence intervals or
"profile" for profile likelihood confidence intervals. The latter is only avail-
able for "gsl_nls" objects that are also of class "nls".

... At present no optional arguments are used.

Details

Method "asymptotic" assumes (approximate) normality of the errors in the model and calcu-
lates standard asymptotic confidence intervals based on the quantiles of a t-distribution. Method
"profile" calculates profile likelihood confidence intervals using the confint.nls method in the
MASS package and for this reason is only available for "gsl_nls" objects that are also of class
"nls".

https://CRAN.R-project.org/package=MASS


confintd 5

Value

A matrix with columns giving the lower and upper confidence limits for each parameter.

See Also

confint, confint.nls in package MASS.

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

## asymptotic ci's
confint(obj)
## Not run:
## profile ci's (requires MASS)
confint(obj, method = "profile")

## End(Not run)

confintd Confidence intervals for derived parameters

Description

confintd is a generic function to compute confidence intervals for continuous functions of the
parameters in a fitted model. The function invokes particular methods which depend on the class
of the first argument.

Usage

confintd(object, expr, level = 0.95, ...)

Arguments

object A fitted model object.
expr An expression or character vector that can be transformed to an expression

giving the function(s) of the parameters to be evaluated. Each expression should
evaluate to a numeric scalar.

level A numeric scalar between 0 and 1 giving the level of the derived parameter
confidence intervals.

... Additional argument(s) for methods

https://CRAN.R-project.org/package=MASS


6 confintd.gsl_nls

Value

A matrix with columns giving the fitted values and lower and upper confidence limits for each
derived parameter. The row names list the individual derived parameter expressions.

See Also

confint

confintd.gsl_nls Confidence intervals for derived parameters

Description

Returns fitted values and confidence intervals for continuous functions of parameters from a fitted
"gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
confintd(object, expr, level = 0.95, dtype = "symbolic", ...)

Arguments

object A fitted model object.

expr An expression or character vector that can be transformed to an expression
giving the function(s) of the parameters to be evaluated. Each expression should
evaluate to a numeric scalar.

level A numeric scalar between 0 and 1 giving the level of the derived parameter
confidence intervals.

dtype A character string equal to "symbolic" for symbolic differentiation of expr with
deriv, or "numeric" for numeric differentiation of expr with numericDeriv
using forward finite differencing.

... Additional argument(s) for methods

Details

This method assumes (approximate) normality of the errors in the model and confidence intervals
are calculated using the delta method, i.e. a first-order Taylor approximation of the (continuous)
function of the parameters. If dtype = "symbolic" (the default), expr is differentiated with respect
to the parameters using symbolic differentiation with deriv. As such, each expression in expr
must contain only operators that are known to deriv. If dtype = "numeric", expr is differentiated
using numeric differentiation with numericDeriv, which should be used if expr cannot be derived
symbolically with deriv.



deviance.gsl_nls 7

Value

A matrix with columns giving the fitted values and lower and upper confidence limits for each
derived parameter. The row names list the individual derived parameter expressions.

See Also

confint

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

## delta method ci's
confintd(obj, expr = c("log(lam)", "A / lam"))

deviance.gsl_nls Model deviance

Description

Returns the deviance of a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
deviance(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric deviance value similar to deviance

See Also

deviance



8 df.residual.gsl_nls

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

deviance(obj)

df.residual.gsl_nls Residual degrees-of-freedom

Description

Returns the residual degrees-of-freedom from a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
df.residual(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Integer residual degrees-of-freedom similar to df.residual.

See Also

df.residual

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))



fitted.gsl_nls 9

df.residual(obj)

fitted.gsl_nls Extract model fitted values

Description

Returns the fitted responses from a "gsl_nls" object. fitted.values can also be used as an alias.

Usage

## S3 method for class 'gsl_nls'
fitted(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric vector of fitted responses similar to fitted.

See Also

fitted

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

fitted(obj)



10 formula.gsl_nls

formula.gsl_nls Extract model formula

Description

Returns the model formula from a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
formula(x, ...)

Arguments

x An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

If the object inherits from class "nls" returns the fitted model as a formula similar to formula.
Otherwise returns the fitted model as a function.

See Also

formula

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

formula(obj)



gsl_nls 11

gsl_nls GSL Nonlinear Least Squares fitting

Description

Determine the nonlinear least-squares estimates of the parameters of a nonlinear model using the
gsl_multifit_nlinear module present in the GNU Scientific Library (GSL).

Usage

gsl_nls(fn, ...)

## S3 method for class 'formula'
gsl_nls(
fn,
data = parent.frame(),
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D"),
control = gsl_nls_control(),
lower,
upper,
jac = NULL,
fvv = NULL,
trace = FALSE,
subset,
weights,
na.action,
model = FALSE,
...

)

## S3 method for class 'function'
gsl_nls(
fn,
y,
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D"),
control = gsl_nls_control(),
lower,
upper,
jac = NULL,
fvv = NULL,
trace = FALSE,
weights,
...

)



12 gsl_nls

Arguments

fn a nonlinear model defined either as a two-sided formula including variables and
parameters, or as a function returning a numeric vector, with first argument the
vector of parameters to be estimated. See the individual method descriptions
below.

data an optional data frame in which to evaluate the variables in fn if defined as a
formula. Can also be a list or an environment, but not a matrix.

y numeric response vector if fn is defined as a function, equal in length to the
vector returned by evaluation of the function fn.

start a vector, list or matrix of initial parameter values or parameter ranges. start is
only allowed to be missing if fn is a selfStart model. The following choices
are supported:

• a named list or named vector of numeric starting values. If start has no
missing values, a standard single-start optimization is performed. If start
contains missing values for one or more parameters, a multi-start algorithm
(see ‘Details’) with dynamic starting ranges for the undefined parameters
and fixed starting values for the remaining parameters is executed. If start
is a named list or vector containing only missing values, the multi-start al-
gorithm considers dynamically changing starting ranges for all parameters.
Note that there is no guarantee that the optimizing solution is a global min-
imum of the least-squares objective.

• a named list with starting parameter ranges in the form of length-2 numeric
vectors. Can also be a (2 by p) named matrix with as columns the numeric
starting ranges for the parameters. If start contains no missing values, a
multi-start algorithm with fixed starting ranges for the parameters is exe-
cuted. Otherwise, if start contains infinities or missing values (e.g. c(0,
Inf) or c(NA, NA)), the multi-start algorithm considers dynamically chang-
ing starting ranges for the parameters with infinite and/or missing ranges.

algorithm character string specifying the algorithm to use. The following choices are sup-
ported:

• "lm" Levenberg-Marquardt algorithm (default).
• "lmaccel" Levenberg-Marquardt algorithm with geodesic acceleration. Sta-

bility is controlled by the avmax parameter in control, setting avmax to
zero is analogous to not using geodesic acceleration.

• "dogleg" Powell’s dogleg algorithm.
• "ddogleg" Double dogleg algorithm, an improvement over "dogleg" by

including information about the Gauss-Newton step while the iteration is
still far from the minimum.

• "subspace2D" 2D generalization of the dogleg algorithm. This method
searches a larger subspace for a solution, it can converge more quickly than
"dogleg" on some problems.

control an optional list of control parameters to tune the least squares iterations and
multistart algorithm. See gsl_nls_control for the available control parameters
and their default values.



gsl_nls 13

lower a named list or named numeric vector of parameter lower bounds. If missing
(default), the parameters are unconstrained from below.

upper a named list or named numeric vector of parameter upper bounds. If missing
(default), the parameters are unconstrained from above.

jac either NULL (default) or a function returning the n by p dimensional Jacobian
matrix of the nonlinear model fn, where n is the number of observations and p
the number of parameters. If a function, the first argument must be the vector
of parameters of length p. If NULL, the Jacobian is computed internally using a
finite difference approximations. Can also be TRUE, in which case jac is derived
symbolically with deriv, this only works if fn is defined as a (non-selfstarting)
formula. If fn is a selfStart model, the Jacobian specified in the "gradient"
attribute of the self-start model is used instead.

fvv either NULL (default) or a function returning an n dimensional vector containing
the second directional derivatives of the nonlinear model fn, with n the number
of observations. This argument is only used if geodesic acceleration is enabled
(algorithm = "lmaccel"). If a function, the first argument must be the vector
of parameters of length p and the second argument must be the velocity vector
also of length p. If NULL, the second directional derivative vector is computed in-
ternal using a finite difference approximation. Can also be TRUE, in which case
fvv is derived symbolically with deriv, this only works if fn is defined as a
(non-selfstarting) formula. If the model function in fn also returns a "hessian"
attribute (similar to the "gradient" attribute in a selfStart model), this Hes-
sian matrix is used to evaluate the second directional derivatives instead.

trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares and the current
parameter estimates are printed after each iteration.

subset an optional vector specifying a subset of observations to be used in the fitting
process. This argument is only used if fn is defined as a formula.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Value na.exclude can be useful.
This argument is only used if fn is defined as a formula.

model a logical value. If TRUE, the model frame is returned as part of the object. De-
faults to FALSE. This argument is only used if fn is defined as a formula.

... additional arguments passed to the calls of fn, jac and fvv if defined as func-
tions.

Value

If fn is a formula returns a list object of class nls. If fn is a function returns a list object of
class gsl_nls. See the individual method descriptions for the structures of the returned lists and
the generic functions applicable to objects of both classes.



14 gsl_nls

Methods (by class)

• gsl_nls(formula): If fn is a formula, the returned list object is of classes gsl_nls and
nls. Therefore, all generic functions applicable to objects of class nls, such as anova,
coef, confint, deviance, df.residual, fitted, formula, logLik, nobs, predict, print,
profile, residuals, summary, vcov and weights are also applicable to the returned list
object. In addition, a method confintd is available for inference of derived parameters.

• gsl_nls(function): If fn is a function, the first argument must be the vector of parameters
and the function should return a numeric vector containing the nonlinear model evaluations
at the provided parameter and predictor or covariate vectors. In addition, the argument y
needs to contain the numeric vector of observed responses, equal in length to the numeric
vector returned by fn. The returned list object is (only) of class gsl_nls. Although the
returned object is not of class nls, the following generic functions remain applicable for an
object of class gsl_nls: anova, coef, confint, deviance, df.residual, fitted, formula,
logLik, nobs, predict, print, residuals, summary, vcov and weights. In addition, a
method confintd is available for inference of derived parameters.

Multi-start algorithm

If start is a list or matrix of parameter ranges, or contains any missing values, a modified version
of the multi-start algorithm described in Hickernell and Yuan (1997) is applied. Note that the start
parameter ranges are only used to bound the domain for the starting values, i.e. the resulting parame-
ter estimates are not constrained to lie within these bounds, use lower and/or upper for this purpose
instead. Quasi-random starting values are sampled in the unit hypercube from a Sobol sequence if
p < 41 and from a Halton sequence (up to p = 1229) otherwise. The initial starting values are scaled
to the specified parameter ranges using an inverse (scaled) logistic function favoring starting values
near the center of the (scaled) domain. The trust region algorithm as specified by algorithm used
for the inexpensive and expensive local search (see Algorithm 2.1 of Hickernell and Yuan (1997))
are the same, only differing in the number of search iterations mstart_p versus mstart_maxiter,
where mstart_p is typically much smaller than mstart_maxiter. When a new stationary point
is detected, the scaling step from the unit hypercube to the starting value domain is updated using
the diagonal of the estimated trust method’s scaling matrix D, which improves optimization per-
formance especially when the parameters live on very different scales. The multi-start algorithm
terminates when NSP (number of stationary points) is larger than or equal to mstart_minsp and
NWSP (number of worse stationary points) is larger than or equal to mstart_r times NSP, or when
the maximum number of major iterations mstart_maxstart is reached. After termination of the
multi-start algorithm, a full single-start optimization is executed starting from the best multi-start
solution.

Missing starting values

If start contains missing (or infinite) values, the multi-start algorithm is executed without fixed
parameter ranges for the missing parameters. The ranges for the missing parameters are initialized
to the unit interval and dynamically increased or decreased in each major iteration of the multi-
start algorithm. The decision to increase or decrease a parameter range is driven by the minimum
and maximum parameter values attained by the first mstart_q inexpensive local searches ordered
by their squared loss, which typically provide a decent indication of the order of magnitude of the
parameter range in which to search for the optimal solution. Note that this procedure is not expected
to always return a global minimum of the nonlinear least-squares objective. Especially when the



gsl_nls 15

objective function contains many local optima, the algorithm may be unable to select parameter
ranges that include the global minimizing solution. In this case, it may help to increase the values
of mstart_n, mstart_r or mstart_minsp to avoid early termination of the algorithm at the cost of
increased computational effort.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.

Hickernell, F.J. and Yuan, Y. (1997) “A simple multistart algorithm for global optimization”, OR
Transactions, Vol. 1 (2).

See Also

nls

https://www.gnu.org/software/gsl/doc/html/nls.html

Examples

# Example 1: exponential model
# (https://www.gnu.org/software/gsl/doc/html/nls.html#exponential-fitting-example)

## data
set.seed(1)
n <- 25
x <- (seq_len(n) - 1) * 3 / (n - 1)
f <- function(A, lam, b, x) A * exp(-lam * x) + b
y <- f(A = 5, lam = 1.5, b = 1, x) + rnorm(n, sd = 0.25)

## model fit
ex1_fit <- gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0) ## starting values

)
summary(ex1_fit) ## model summary
predict(ex1_fit, interval = "prediction") ## prediction intervals

## multi-start
gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = list(A = c(0, 100), lam = c(0, 10), b = c(-10, 10)) ## starting ranges

)
## missing starting values
gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = NA, lam = NA, b = NA) ## unknown start

)

## analytic Jacobian 1

https://www.gnu.org/software/gsl/doc/html/nls.html


16 gsl_nls

gsl_nls(
fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0), ## starting values
jac = function(par) with(as.list(par), ## jacobian
cbind(A = exp(-lam * x), lam = -A * x * exp(-lam * x), b = 1)

)
)

## analytic Jacobian 2
gsl_nls(

fn = y ~ A * exp(-lam * x) + b, ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(A = 0, lam = 0, b = 0), ## starting values
jac = TRUE ## automatic derivation

)

## self-starting model
gsl_nls(

fn = y ~ SSasymp(x, Asym, R0, lrc), ## model formula
data = data.frame(x = x, y = y) ## model fit data

)

# Example 2: Gaussian function
# (https://www.gnu.org/software/gsl/doc/html/nls.html#geodesic-acceleration-example-2)

## data
set.seed(1)
n <- 100
x <- seq_len(n) / n
f <- function(a, b, c, x) a * exp(-(x - b)^2 / (2 * c^2))
y <- f(a = 5, b = 0.4, c = 0.15, x) * rnorm(n, mean = 1, sd = 0.1)

## Levenberg-Marquardt (default)
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
trace = TRUE ## verbose output

)

## Levenberg-Marquardt w/ geodesic acceleration 1
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE ## verbose output

)

## Levenberg-Marquardt w/ geodesic acceleration 2
## second directional derivative
fvv <- function(par, v, x) {



gsl_nls 17

with(as.list(par), {
zi <- (x - b) / c
ei <- exp(-zi^2 / 2)
2 * v[["a"]] * v[["b"]] * zi / c * ei + 2 * v[["a"]] * v[["c"]] * zi^2 / c * ei -

v[["b"]]^2 * a / c^2 * (1 - zi^2) * ei -
2 * v[["b"]] * v[["c"]] * a / c^2 * zi * (2 - zi^2) * ei -
v[["c"]]^2 * a / c^2 * zi^2 * (3 - zi^2) * ei

})
}

## analytic fvv 1
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE, ## verbose output
fvv = fvv, ## analytic fvv
x = x ## argument passed to fvv

)

## analytic fvv 2
gsl_nls(

fn = y ~ a * exp(-(x - b)^2 / (2 * c^2)), ## model formula
data = data.frame(x = x, y = y), ## model fit data
start = c(a = 1, b = 0, c = 1), ## starting values
algorithm = "lmaccel", ## algorithm
trace = TRUE, ## verbose output
fvv = TRUE ## automatic derivation

)

# Example 3: Branin function
# (https://www.gnu.org/software/gsl/doc/html/nls.html#comparing-trs-methods-example)

## Branin model function
branin <- function(x) {

a <- c(-5.1 / (4 * pi^2), 5 / pi, -6, 10, 1 / (8 * pi))
f1 <- x[2] + a[1] * x[1]^2 + a[2] * x[1] + a[3]
f2 <- sqrt(a[4] * (1 + (1 - a[5]) * cos(x[1])))
c(f1, f2)

}

## Dogleg minimization w/ model as function
gsl_nls(

fn = branin, ## model function
y = c(0, 0), ## response vector
start = c(x1 = 6, x2 = 14.5), ## starting values
algorithm = "dogleg" ## algorithm

)

# Available example problems
nls_test_list()



18 gsl_nls_control

## BOD regression
## (https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml)
(boxbod <- nls_test_problem(name = "BoxBOD"))
with(boxbod,

gsl_nls(
fn = fn,
data = data,
start = list(b1 = NA, b2 = NA)

)
)

## Rosenbrock function
(rosenbrock <- nls_test_problem(name = "Rosenbrock"))
with(rosenbrock,

gsl_nls(
fn = fn,
y = y,
start = c(x1 = NA, x2 = NA),
jac = jac

)
)

gsl_nls_control Tunable Nonlinear Least Squares iteration parameters

Description

Allow the user to tune the characteristics of the gsl_nls and gsl_nls_large nonlinear least
squares algorithms.

Usage

gsl_nls_control(
maxiter = 100,
scale = "more",
solver = "qr",
fdtype = "forward",
factor_up = 2,
factor_down = 3,
avmax = 0.75,
h_df = sqrt(.Machine$double.eps),
h_fvv = 0.02,
xtol = sqrt(.Machine$double.eps),
ftol = sqrt(.Machine$double.eps),
gtol = sqrt(.Machine$double.eps),
mstart_n = 30,
mstart_p = 5,
mstart_q = mstart_n%/%10,



gsl_nls_control 19

mstart_r = 4,
mstart_s = 2,
mstart_tol = 0.25,
mstart_maxiter = 10,
mstart_maxstart = 250,
mstart_minsp = 1,
...

)

Arguments

maxiter positive integer, termination occurs when the number of iterations reaches maxiter.
scale character, scaling method or damping strategy determining the diagonal scaling

matrix D. The following options are supported:
• "more" Moré rescaling (default). This method makes the problem scale-

invariant and has been proven effective on a large class of problems.
• "levenberg" Levenberg rescaling. This method has also proven effective

on a large class of problems, but is not scale-invariant. It may perform
better for problems susceptible to parameter evaporation (parameters going
to infinity).

• "marquardt" Marquardt rescaling. This method is scale-invariant, but it is
generally considered inferior to both the Levenberg and Moré strategies.

solver character, method used to solve the linear least squares system resulting as a sub-
problem in each iteration. For large-scale problems fitted with gsl_nls_large,
the Cholesky solver ("cholesky") is always selected and this parameter is not
used. For least squares problems fitted with gsl_nls the following choices are
supported:

• "qr" QR decomposition of the Jacobian (default). This method will pro-
duce reliable solutions in cases where the Jacobian is rank deficient or near-
singular but does require more operations than the Cholesky method.

• "cholesky" Cholesky decomposition of the Jacobian. This method is faster
than the QR approach, however it is susceptible to numerical instabilities if
the Jacobian matrix is rank deficient or near-singular.

• "svd" SVD decomposition of the Jacobian. This method will produce the
most reliable solutions for ill-conditioned Jacobians but is also the slowest.

fdtype character, method used to numerically approximate the Jacobian and/or second-
order derivatives when geodesic acceleration is used. Either "forward" for for-
ward finite differencing or "center" for centered finite differencing. For least
squares problems solved with gsl_nls_large, numerical approximation of the
Jacobian matrix is not available and this parameter is only used to numerically
approximate the second-order derivatives (if geodesic acceleration is used).

factor_up numeric factor by which to increase the trust region radius when a search step
is accepted. Too large values may destabilize the search, too small values slow
down the search, defaults to 2.

factor_down numeric factor by which to decrease the trust region radius when a search step
is rejected. Too large values may destabilize the search, too small values slow
down the search, defaults to 3.



20 gsl_nls_control

avmax numeric value, the ratio of the acceleration term to the velocity term when using
geodesic acceleration to solve the nonlinear least squares problem. Any steps
with a ratio larger than avmax are rejected, defaults to 0.75. For problems which
experience difficulty converging, this threshold could be lowered.

h_df numeric value, the step size for approximating the Jacobian matrix with finite
differences, defaults to sqrt(.Machine$double.eps).

h_fvv numeric value, the step size for approximating the second directional derivative
when geodesic acceleration is used to solve the nonlinear least squares problem,
defaults to 0.02. This is only used if no analytic second directional derivative
(fvv) is specified in gsl_nls or gsl_nls_large.

xtol numeric value, termination occurs when the relative change in parameters be-
tween iterations is <= xtol. A general guideline for selecting the step tolerance
is to choose xtol = 10^(-d) where d is the number of accurate decimal digits
desired in the parameters, defaults to sqrt(.Machine$double.eps).

ftol numeric value, termination occurs when the relative change in sum of squared
residuals between iterations is <= ftol, defaults to sqrt(.Machine$double.eps).

gtol numeric value, termination occurs when the relative size of the gradient of the
sum of squared residuals is <= gtol, indicating a local minimum, defaults to
.Machine$double.eps^(1/3)

mstart_n positive integer, number of quasi-random points drawn in each major iteration,
parameter N in Hickernell and Yuan (1997). Default is 30.

mstart_p positive integer, number of iterations of inexpensive local search to concentrate
the sample, parameter p in Hickernell and Yuan (1997). Default is 5.

mstart_q positive integer, number of points retained in the concentrated sample, parameter
q in Hickernell and Yuan (1997). Default is mstart_n %/% 10..

mstart_r positive integer, scaling factor of number of stationary points determining when
the multi-start algorithm terminates, parameter r in Hickernell and Yuan (1997).
Default is 4. If the starting ranges for one or more parameters are unbounded
and updated dynamically, mstart_r is multiplied by a factor 10 to avoid early
termination.

mstart_s positive integer, minimum number of iterations a point needs to be retained be-
fore starting an efficient local search, parameter s in Hickernell and Yuan (1997).
Default is 2.

mstart_tol numeric value, multiplicative tolerance (1 + mstart_tol) used as criterion to
start an efficient local search (epsilon in Algorithm 2.1, Hickernell and Yuan
(1997)).

mstart_maxiter positive integer, maximum number of iterations in the efficient local search al-
gorithm (Algorithm B, Hickernell and Yuan (1997)), defaults to 10.

mstart_maxstart

positive integer, minimum number of major iterations (Algorithm 2.1, Hicker-
nell and Yuan (1997)) before the multi-start algorithm terminates, defaults to
250.

mstart_minsp positive integer, minimum number of detected stationary points before the multi-
start algorithm terminates, defaults to 1.

... any additional arguments (currently not used).



gsl_nls_control 21

Value

A list with exactly twenty-one components:

• maxiter
• scale
• solver
• fdtype
• factor_up
• factor_down
• avmax
• h_df
• h_fvv
• xtol
• ftol
• gtol
• mstart_n
• mstart_p
• mstart_q
• mstart_r
• mstart_s
• mstart_tol
• mstart_maxiter
• mstart_maxstart
• mstart_minsp

with meanings as explained under ’Arguments’.

Note

ftol is disabled in some versions of the GSL library.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.
Hickernell, F.J. and Yuan, Y. (1997) “A simple multistart algorithm for global optimization”, OR
Transactions, Vol. 1 (2).

See Also

nls.control

https://www.gnu.org/software/gsl/doc/html/nls.html#tunable-parameters

Examples

## default tuning parameters
gsl_nls_control()

https://www.gnu.org/software/gsl/doc/html/nls.html#tunable-parameters


22 gsl_nls_large

gsl_nls_large GSL Large-scale Nonlinear Least Squares fitting

Description

Determine the nonlinear least-squares estimates of the parameters of a large nonlinear model system
using the gsl_multilarge_nlinear module present in the GNU Scientific Library (GSL).

Usage

gsl_nls_large(fn, ...)

## S3 method for class 'formula'
gsl_nls_large(
fn,
data = parent.frame(),
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D", "cgst"),
control = gsl_nls_control(),
jac,
fvv,
trace = FALSE,
subset,
weights,
na.action,
model = FALSE,
...

)

## S3 method for class 'function'
gsl_nls_large(
fn,
y,
start,
algorithm = c("lm", "lmaccel", "dogleg", "ddogleg", "subspace2D", "cgst"),
control = gsl_nls_control(),
jac,
fvv,
trace = FALSE,
weights,
...

)

Arguments

fn a nonlinear model defined either as a two-sided formula including variables and
parameters, or as a function returning a numeric vector, with first argument the



gsl_nls_large 23

vector of parameters to be estimated. See the individual method descriptions
below.

data an optional data frame in which to evaluate the variables in fn if defined as a
formula. Can also be a list or an environment, but not a matrix.

y numeric response vector if fn is defined as a function, equal in length to the
vector returned by evaluation of the function fn.

start a named list or named numeric vector of starting estimates. start is only al-
lowed to be missing if fn is a selfStart model. If fn is a formula, a naive
guess for start is tried, but this should not be relied on.

algorithm character string specifying the algorithm to use. The following choices are sup-
ported:

• "lm" Levenberg-Marquardt algorithm (default).
• "lmaccel" Levenberg-Marquardt algorithm with geodesic acceleration. Can

be faster than "lm" but less stable. Stability is controlled by the avmax
parameter in control, setting avmax to zero is analogous to not using
geodesic acceleration.

• "dogleg" Powell’s dogleg algorithm.
• "ddogleg" Double dogleg algorithm, an improvement over "dogleg" by

including information about the Gauss-Newton step while the iteration is
still far from the minimum.

• "subspace2D" 2D generalization of the dogleg algorithm. This method
searches a larger subspace for a solution, it can converge more quickly than
"dogleg" on some problems.

• "cgst" Steihaug-Toint Conjugate Gradient algorithm, a generalization of
the dogleg algorithm that avoids solving for the Gauss-Newton step directly,
instead using an iterative conjugate gradient algorithm. The method per-
forms well at points where the Jacobian is singular, and is also suitable for
large-scale problems where factoring the Jacobian matrix is prohibitively
expensive.

control an optional list of control parameters to tune the least squares iterations and
multistart algorithm. See gsl_nls_control for the available control parameters
and their default values.

jac a function returning the n by p dimensional Jacobian matrix of the nonlinear
model fn, where n is the number of observations and p the number of parame-
ters. The first argument must be the vector of parameters of length p. Can also
be TRUE, in which case jac is derived symbolically with deriv, this only works
if fn is defined as a (non-selfstarting) formula. If fn is a selfStart model, the
Jacobian specified in the "gradient" attribute of the self-start model is used
instead.

fvv a function returning an n dimensional vector containing the second directional
derivatives of the nonlinear model fn, with n the number of observations. This
argument is only used if geodesic acceleration is enabled (algorithm = "lmaccel").
The first argument must be the vector of parameters of length p and the sec-
ond argument must be the velocity vector also of length p. Can also be TRUE,
in which case fvv is derived symbolically with deriv, this only works if fn



24 gsl_nls_large

is defined as a (non-selfstarting) formula. If the model function in fn also re-
turns a "hessian" attribute (similar to the "gradient" attribute in a selfStart
model), this Hessian matrix is used to evaluate the second directional derivatives
instead.

trace logical value indicating if a trace of the iteration progress should be printed.
Default is FALSE. If TRUE, the residual (weighted) sum-of-squares, the squared
(Euclidean) norm of the current parameter estimates and the condition number
of the Jacobian are printed after each iteration.

subset an optional vector specifying a subset of observations to be used in the fitting
process. This argument is only used if fn is defined as a formula.

weights an optional numeric vector of (fixed) weights. When present, the objective func-
tion is weighted least squares.

na.action a function which indicates what should happen when the data contain NAs. The
default is set by the na.action setting of options, and is na.fail if that is
unset. The ’factory-fresh’ default is na.omit. Value na.exclude can be useful.
This argument is only used if fn is defined as a formula.

model a logical value. If TRUE, the model frame is returned as part of the object. De-
faults to FALSE. This argument is only used if fn is defined as a formula.

... additional arguments passed to the calls of fn, jac and fvv if defined as func-
tions.

Value

If fn is a formula returns a list object of class nls. If fn is a function returns a list object of
class gsl_nls. See the individual method descriptions for the structures of the returned lists and
the generic functions applicable to objects of both classes.

Methods (by class)

• gsl_nls_large(formula): If fn is a formula, the returned list object is of classes gsl_nls
and nls. Therefore, all generic functions applicable to objects of class nls, such as anova,
coef, confint, deviance, df.residual, fitted, formula, logLik, nobs, predict, print,
profile, residuals, summary, vcov and weights are also applicable to the returned list
object. In addition, a method confintd is available for inference of derived parameters.

• gsl_nls_large(function): If fn is a function, the first argument must be the vector of
parameters and the function should return a numeric vector containing the nonlinear model
evaluations at the provided parameter and predictor or covariate vectors. In addition, the
argument y needs to contain the numeric vector of observed responses, equal in length to the
numeric vector returned by fn. The returned list object is (only) of class gsl_nls. Although
the returned object is not of class nls, the following generic functions remain applicable for an
object of class gsl_nls: anova, coef, confint, deviance, df.residual, fitted, formula,
logLik, nobs, predict, print, residuals, summary, vcov and weights. In addition, a
method confintd is available for inference of derived parameters.

References

M. Galassi et al., GNU Scientific Library Reference Manual (3rd Ed.), ISBN 0954612078.



gsl_nls_large 25

See Also

gsl_nls

https://www.gnu.org/software/gsl/doc/html/nls.html

Examples

# Large NLS example
# (https://www.gnu.org/software/gsl/doc/html/nls.html#large-nonlinear-least-squares-example)

## number of parameters
p <- 250

## model function
f <- function(theta) {

c(sqrt(1e-5) * (theta - 1), sum(theta^2) - 0.25)
}

## jacobian function
jac <- function(theta) {

rbind(diag(sqrt(1e-5), nrow = length(theta)), 2 * t(theta))
}

## dense Levenberg-Marquardt

gsl_nls_large(
fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
algorithm = "lm", ## algorithm
jac = jac, ## jacobian
control = list(maxiter = 250)

)

## dense Steihaug-Toint conjugate gradient

gsl_nls_large(
fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
jac = jac, ## jacobian
algorithm = "cgst" ## algorithm

)

## sparse Jacobian function
jacsp <- function(theta) {

rbind(Matrix::Diagonal(x = sqrt(1e-5), n = length(theta)), 2 * t(theta))
}

## sparse Levenberg-Marquardt
gsl_nls_large(

https://www.gnu.org/software/gsl/doc/html/nls.html


26 hatvalues.gsl_nls

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
algorithm = "lm", ## algorithm
jac = jacsp, ## sparse jacobian
control = list(maxiter = 250)

)

## sparse Steihaug-Toint conjugate gradient
gsl_nls_large(

fn = f, ## model
y = rep(0, p + 1), ## (dummy) responses
start = 1:p, ## start values
jac = jacsp, ## sparse jacobian
algorithm = "cgst" ## algorithm

)

hatvalues.gsl_nls Calculate leverage values

Description

Returns leverage values (hat values) from a fitted "gsl_nls" object based on the estimated variance-
covariance matrix of the model parameters.

Usage

## S3 method for class 'gsl_nls'
hatvalues(model, ...)

Arguments

model An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric vector of leverage values similar to hatvalues.

See Also

hatvalues



logLik.gsl_nls 27

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(
x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

hatvalues(obj)

logLik.gsl_nls Extract model log-likelihood

Description

Returns the model log-likelihood of a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
logLik(object, REML = FALSE, ...)

Arguments

object An object inheriting from class "gsl_nls".

REML logical value; included for compatibility reasons only, should not be used.

... At present no optional arguments are used.

Value

Numeric object of class "logLik" identical to logLik.

See Also

logLik

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)



28 nls_test_list

## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

logLik(obj)

nls_test_list Available NLS test problems

Description

Returns an overview of 59 NLS test problems originating primarily from the NIST Statistical Ref-
erence Datasets (StRD) archive; Bates and Watts (1988); and More, Garbow and Hillstrom (1981).

Usage

nls_test_list(fields = c("name", "class", "p", "n", "check"))

Arguments

fields optional character vector to return a subset of columns in the data.frame.

Value

a data.frame with high-level information about the available test problems. The following columns
are returned by default:

• "name" Name of the test problem for use in nls_test_problem.
• "class" Either "formula" if the model is defined as a formula or "function" if defined as a

function.
• "p" Default number of parameters in the test problem.
• "n" Default number of residuals in the test problem.
• "check" One of the following three options: (1) "p, n fixed" if the listed values for p and n

are the only ones possible; (2) "p <= n free" if the values for p and n are not fixed, but p must
be smaller or equal to n; (3) "p == n free" if the values for p and n are not fixed, but p must
be equal to n.

References

D.M. Bates and Watts, D.G. (1988). Nonlinear Regression Analysis and Its Applications, Wiley,
ISBN: 0471816434.

J.J. Moré, Garbow, B.S. and Hillstrom, K.E. (1981). Testing unconstrained optimization software,
ACM Transactions on Mathematical Software, 7(1), 17-41.

See Also

nls_test_problem

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

https://people.math.sc.edu/Burkardt/f_src/test_nls/test_nls.html

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://people.math.sc.edu/Burkardt/f_src/test_nls/test_nls.html


nls_test_problem 29

Examples

## available test problems
nls_test_list()

nls_test_problem Retrieve an NLS test problem

Description

Fetches the model definition and model data required to solve a single NLS test problem with
gsl_nls (or nls if the model is defined as a formula). Use nls_test_list to list the names of the
available NLS test problems.

Usage

nls_test_problem(name, p = NA, n = NA)

Arguments

name Name of the NLS test problem, as returned in the "name" column of nls_test_list.
p The number of parameters in the NLS test problem constrained by the check

condition returned by nls_test_list. If NA (default), the default number of
parameters as listed by nls_test_list is used.

n The number of residuals in the NLS test problem constrained by the check con-
dition returned by nls_test_list. If NA (default), the default number of resid-
uals as listed by nls_test_list is used.

Value

If the model is defined as a formula, a list of class "nls_test_formula" with elements:

• data a data.frame with n rows containing the data (predictor and response values) used in the
regression problem.

• fn a formula defining the test problem model.
• start a named vector of length p with suggested starting values for the parameters.
• target a named vector of length p with the certified target values for the parameters corre-

sponding to the best-available solutions.

If the model is defined as a function, a list of class "nls_test_function" with elements:

• fn a function defining the test problem model. fn takes a vector of parameters of length p as
its first argument and returns a numeric vector of length n. fn

• y a numeric vector of length n containing the response values.
• start a numeric named vector of length p with suggested starting values for the parameters.
• jac a function defining the analytic Jacobian matrix of the model fn. jac takes a vector of

parameters of length p as its first argument and returns an n by p dimensional matrix.
• target a numeric named vector of length p with the certified target values for the parameters,

or a vector of NA’s if no target solution is available.



30 nobs.gsl_nls

Note

For several problems the optimal least-squares objective of the target solution can be obtained at
multiple different parameter locations.

References

D.M. Bates and Watts, D.G. (1988). Nonlinear Regression Analysis and Its Applications, Wiley,
ISBN: 0471816434.

J.J. Moré, Garbow, B.S. and Hillstrom, K.E. (1981). Testing unconstrained optimization software,
ACM Transactions on Mathematical Software, 7(1), 17-41.

See Also

nls_test_list

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml

https://people.math.sc.edu/Burkardt/f_src/test_nls/test_nls.html

Examples

## example regression problem
ratkowsky2 <- nls_test_problem(name = "Ratkowsky2")
with(ratkowsky2,

gsl_nls(
fn = fn,
data = data,
start = start

)
)

## example optimization problem
rosenbrock <- nls_test_problem(name = "Rosenbrock")
with(rosenbrock,

gsl_nls(
fn = fn,
y = y,
start = start,
jac = jac

)
)

nobs.gsl_nls Extract the number of observations

Description

Returns the number of observations from a "gsl_nls" object.

https://www.itl.nist.gov/div898/strd/nls/nls_main.shtml
https://people.math.sc.edu/Burkardt/f_src/test_nls/test_nls.html


predict.gsl_nls 31

Usage

## S3 method for class 'gsl_nls'
nobs(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Integer number of observations similar to nobs

See Also

nobs

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

nobs(obj)

predict.gsl_nls Calculate model predicted values

Description

Returns predicted values for the expected response from a fitted "gsl_nls" object. Asymptotic
confidence or prediction (tolerance) intervals at a given level can be evaluated by specifying the
appropriate interval argument.

Usage

## S3 method for class 'gsl_nls'
predict(
object,
newdata,
scale = NULL,
interval = c("none", "confidence", "prediction"),



32 predict.gsl_nls

level = 0.95,
...

)

Arguments

object An object inheriting from class "gsl_nls".

newdata A named list or data.frame in which to look for variables with which to pre-
dict. If newdata is missing, the predicted values at the original data points are
returned.

scale A numeric scalar or vector. If it is set, it is used as the residual standard deviation
(or vector of residual standard deviations) in the computation of the standard
errors, otherwise this information is extracted from the model fit.

interval A character string indicating if confidence or prediction (tolerance) intervals at
the specified level should be returned.

level A numeric scalar between 0 and 1 giving the confidence level for the intervals
(if any) to be calculated.

... At present no optional arguments are used.

Value

If interval = "none" (default), a vector of predictions for the mean response. Otherwise, a matrix
with columns fit, lwr and upr. The first column (fit) contains predictions for the mean response.
The other two columns contain lower (lwr) and upper (upr) confidence or prediction bounds at the
specified level.

See Also

predict.nls

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

predict(obj)
predict(obj, newdata = data.frame(x = 1:(2 * n) / n))
predict(obj, interval = "confidence")
predict(obj, interval = "prediction", level = 0.99)



residuals.gsl_nls 33

residuals.gsl_nls Extract model residuals

Description

Returns the model residuals from a fitted "gsl_nls" object. resid can also be used as an alias.

Usage

## S3 method for class 'gsl_nls'
residuals(object, type = c("response", "pearson"), ...)

Arguments

object An object inheriting from class "gsl_nls".

type character; if "response" the raw residuals are returned, if "pearson" the Pear-
son are returned, i.e. the raw residuals divided by their standard error.

... At present no optional arguments are used.

Value

Numeric vector of model residuals similar to residuals.

See Also

residuals

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

residuals(obj)



34 sigma.gsl_nls

sigma.gsl_nls Residual standard deviation

Description

Returns the estimated (unweighted) residual standard deviation of a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
sigma(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

Numeric residual standard deviation value similar to sigma

See Also

sigma

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

sigma(obj)



summary.gsl_nls 35

summary.gsl_nls Model summary

Description

Returns the model summary for a fitted "gsl_nls" object.

Usage

## S3 method for class 'gsl_nls'
summary(object, correlation = FALSE, symbolic.cor = FALSE, ...)

Arguments

object An object inheriting from class "gsl_nls".

correlation logical; if TRUE, the correlation matrix of the estimated parameters is returned
and printed.

symbolic.cor logical; if TRUE, print the correlations in a symbolic form (see symnum) rather
than as numbers.

... At present no optional arguments are used.

Value

List object of class "summary.nls" identical to summary.nls

See Also

summary.nls

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

summary(obj)



36 vcov.gsl_nls

vcov.gsl_nls Calculate variance-covariance matrix

Description

Returns the estimated variance-covariance matrix of the model parameters from a fitted "gsl_nls"
object.

Usage

## S3 method for class 'gsl_nls'
vcov(object, ...)

Arguments

object An object inheriting from class "gsl_nls".

... At present no optional arguments are used.

Value

A matrix containing the estimated covariances between the parameter estimates similar to vcov
with row and column names corresponding to the parameter names given by coef.gsl_nls.

See Also

vcov

Examples

## data
set.seed(1)
n <- 25
xy <- data.frame(

x = (1:n) / n,
y = 2.5 * exp(-1.5 * (1:n) / n) + rnorm(n, sd = 0.1)

)
## model
obj <- gsl_nls(fn = y ~ A * exp(-lam * x), data = xy, start = c(A = 1, lam = 1))

vcov(obj)



Index

anova, 2, 3
anova.gsl_nls, 2

class, 5
coef, 3
coef.gsl_nls, 3, 36
confint, 5–7
confint.gsl_nls, 4
confint.nls, 4, 5
confintd, 5
confintd.gsl_nls, 6

data.frame, 28
deriv, 6, 13, 23
deviance, 7
deviance.gsl_nls, 7
df.residual, 8
df.residual.gsl_nls, 8

expression, 5, 6

fitted, 9
fitted.gsl_nls, 9
formula, 10, 12, 13, 22–24, 28, 29
formula.gsl_nls, 10
function, 10, 12, 13, 22–24, 28, 29

gsl_nls, 11, 18–20, 25, 29
gsl_nls_control, 12, 18, 23
gsl_nls_large, 18–20, 22

hatvalues, 26
hatvalues.gsl_nls, 26

list, 29
logLik, 27
logLik.gsl_nls, 27

na.exclude, 13, 24
na.fail, 13, 24
na.omit, 13, 24

nls, 15, 29
nls.control, 21
nls_test_list, 28, 29, 30
nls_test_problem, 28, 29
nobs, 31
nobs.gsl_nls, 30
numericDeriv, 6

options, 13, 24

predict.gsl_nls, 31
predict.nls, 32

residuals, 33
residuals.gsl_nls, 33

selfStart, 12, 13, 23
sigma, 34
sigma.gsl_nls, 34
summary.gsl_nls, 35
summary.nls, 35
symnum, 35

vcov, 36
vcov.gsl_nls, 36

37


	anova.gsl_nls
	coef.gsl_nls
	confint.gsl_nls
	confintd
	confintd.gsl_nls
	deviance.gsl_nls
	df.residual.gsl_nls
	fitted.gsl_nls
	formula.gsl_nls
	gsl_nls
	gsl_nls_control
	gsl_nls_large
	hatvalues.gsl_nls
	logLik.gsl_nls
	nls_test_list
	nls_test_problem
	nobs.gsl_nls
	predict.gsl_nls
	residuals.gsl_nls
	sigma.gsl_nls
	summary.gsl_nls
	vcov.gsl_nls
	Index

